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Abstract. In this paper, we study Lie superalgebras of 2× 2 matrix-valued first-order
differential operators on the complex line. We first completely classify all such superalgebras
of finite dimension. Among the finite-dimensional superalgebras whose odd subspace is non-
trivial, we find those admitting a finite-dimensional invariant module of smooth vector-valued
functions, and classify all the resulting finite-dimensional modules. The latter Lie superalgebras
and their modules are the building blocks in the construction of quasi-exactly solvable quantum
mechanical models for spin-1

2 particles in one dimension.

1. Introduction

The discovery of quasi-exactly solvable (QES) spectral problems over the past decade has
been a continuous source of interesting mathematical problems. The characteristic feature
of a QES Hamiltonian is that a non-trivial portion of its spectrum, but not necessarily all
of it, can be computed algebraically. Thus, QES spectral problems occupy an intermediate
position between exactly solvable problems, whose spectrum can be completely described,
and the vast majority of non-solvable ones. Lie algebras of differential operators have been
used extensively to generate physically interesting QES Schrödinger operators, [14–16]; see
also the review book [17]. The basic idea underlying the application of Lie algebras of
differential operators to constructing QES models can be summarized as follows. Ifg is a
Lie algebra of first-order differential operators with an invariant finite-dimensionalg-module
of smooth fuctionsN , then any scalar HamiltonianH = −1+ V which can be expressed
as a quadratic combination in the generators ofg,

H =
∑
a,b

cabT
aT b +

∑
a

caT
a + c0 (T a ∈ g) (1.1)

will automatically preserveN . Consequently, if the functions inN satisfy suitable boundary
conditions, one can compute dimN eigenfunctions and eigenvalues by diagonalizing the
finite matrix which representsH in EndN . Therefore, the classification under some well
adapted notion of equivalence of all finite-dimensional Lie algebras of first-order differential
operators admitting an invariant module of functions (henceforth calledQES Lie algebras) is
a good starting point to obtain large families of QES Hamiltonians. In the one-dimensional
scalar case the classification is very simple. Indeed, every finite-dimensional QES Lie
algebra in one real or complex variable is isomorphic to a subalgebra of (a central extension
of) sl2, [9, 11, 15]. The classification of finite-dimensional QES Lie algebras in two variables
is considerably more involved. There are several inequivalent families of QES Lie algebras,
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some of them of arbitrary dimension, and the real and complex classifications no longer
coincide [6, 8].

The above classification is not, however, the end of the problem. One still has to
determine the conditions under which a quadratic combination of the form (1.1) is equivalent
to a Schr̈odinger operator−1 + V . In the one-dimensional case, it turns out that any
quadratic combination (1.1) may be written (locally) in Schrödinger form by the combination
of a change of the independent variable and a gauge transformation with a non-vanishing
function (up to a sign). The situation in higher dimensions is again more complicated.
Explicit necessary and sufficient conditions for the equivalence under local diffeomorphisms
and gauge transformations of scalar second-order differential operators were first found by
Cotton [2]. As a special case, one obtains conditions for the equivalence of a second-order
differential operator to a Schrödinger operator acting on a (in general) curved space-time.
These conditions have been solved only in some particular cases, and appear to be too
complicated to be solved in full generality; see [12] for an in-depth study.

This formalism may be extended to deal with matrix-valued differential equations,
suitable for the description of the dynamics of particles with non-zero spin, [14, 1, 3], or
the treatment of coupled-channel scattering problems [18]. The procedure for constructing
matrix-valued QES Hamiltonians is essentially the same as in the scalar case, with the role
of the Lie algebrag now being played by aLie superalgebraS of matrix-valued differential
operators with an invariant subspace of vector-valued functions, [3]. In principle,S need not
be finite-dimensional; in practice, however, the only examples constructed so far with this
method are associated to finite-dimensional Lie superalgebras, [14, 1, 3]. Lie superalgebras
of differential operators are significantly less understood than ordinary Lie algebras. In fact,
to the best of the authors’ knowledge, no general classification of finite-dimensional Lie
superalgebras of differential operators has ever been attempted. The aim of this paper is
precisely that of classifying all QES Lie superalgebras of 2×2 matrix first-order differential
operators in one complex variable. The Lie superalgebras thus obtained can be readily used
to construct new examples of second-order 2× 2 matrix-valued QES operators, by taking
quadratic combinations in the generators ofS and performing a suitable change of the
independent variable and/or a gauge transformation. Necessary and sufficient conditions
for the equivalence of a 2× 2 matrix-valued differential operator to a Schrödinger operator
were obtained in [3, 4]. A number of QES Lie superalgebras preserving a two-component
vector-valued module of polynomials in two complex variables were recently studied in [5].

This paper is organized as follows. In section 2 we summarize the main results
concerning Lie algebras of first-order scalar differential operators on the complex line. In
section 3 we outline our classification scheme for the finite-dimensional Lie superalgebras
S of 2 × 2 matrix-valued first-order differential operators. We start with a basic result
describing the structure of the even and odd subspaces ofS. The classification of all
such Lie superalgebrasS is then shown to be completely equivalent to classifying the
finite-dimensional graded subalgebrass of the Lie superalgebrad1 of first-order differential
operators in one ordinary variable and one Grassmann variable taking values in the one-
generator Grassmann algebra31. In section 4 we classify all possible even subalgebrasl

of d1. The concept of a translation bimodule introduced in this section turns out to play an
essential role in the classification, as later shown in sections 5 and 6. Section 5 is devoted
to the classification of the odd subspacess1 corresponding to each subalgebral obtained in
section 4. We first state a necessary condition forl to admit a non-zero odd subspaces1. The
list of the even subalgebrass0 and their corresponding non-trivial odd subspacess1 is then
presented in tables 1–4. Finally, in section 6 the classification is completed by finding all
the Lie superalgebras with non-trivial odd subspace that admit a finite-dimensional module
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Table 1. Odd subspaces for Lie algebras of types0
0.

Label s1 Rules

01 〈θ(φi∂z + ωi), h′lφiθ〉 16 i 6 m

02 〈χi∂θ + ωiθ〉 16 i 6 mχiωi = 0 if ε = 1
χiωk + χkωi ∈ s0

0

Table 2. Odd subspaces for Lie algebras of types1
0.

Label s1 Rules

11 m(〈θ∂z, θ〉,M) nµ+σ > sσ +mµ + rµ − δα0δσ0 if
(i) mµ > 0 or rµ > 1
(ii) σ ∈ 6, with α 6= 0 if s0 = 0

12 m(〈∂θ , θ〉,M) rµ = 0 if ε = 1
mµ, nµ̃ > 0⇒ sµ+µ̃ > mµ + nµ̃.
rµ > 1, nµ̃ > 0⇒ sµ+µ̃ > mµ + rµ + nµ̃
rµ > 1, mµ̃ > 0⇒ sµ+µ̃ > nµ + rµ +mµ̃
rµ, rµ̃ > 1, mµ + nµ̃ 6= mµ̃ + nµ
⇒ sµ+µ̃ > rµ + rµ̃ +max(mµ + nµ̃,mµ̃ + nµ).
rµ, rµ̃ > 1, mµ + nµ̃ = mµ̃ + nµ, Spµµ̃ 6= ∅ for somep
⇒ sµ+µ̃ > mµ + nµ̃ +maxSp

µµ̃
6=∅ p

13 〈θ∂z, ∂θ + ε̂zm0+1θ; zieµzθ〉 ε̂ = 1⇒ ε = α = 0.
6∗ = M∗, sµ = mµ. Either
(i) ε̂ = α = 0⇒ s0 = m0, m0 + 1
(ii) ε̂ = 0, α 6= 0⇒ s0 = m0

(iii) ε̂ = 1⇒ s0 = m0 + 1

14 〈θ∂z + ∂θ ; zieµzθ〉 ε = α = 0
6∗ = M∗, sµ = mµ, s0 = m0, m0 + 1

The setSp
µµ̃
⊂ Z4 in case 12 is defined as

S
p

µµ̃
= {(k, k̃, j, ̃ )|k + ̃ = k̃ + j = p

and
c
µ,k
j + cµ̃,k̃

̃
6= 016 j 6 k 6 rµ16 ̃ 6 k̃ 6 rµ̃}.

In cases 13 and 14 the indexi = 0, . . . , mµ, µ ∈ M.

n ⊂ C∞(31). The associated finite-dimensional modules are also classified, and the results
are summarized in tables 5–9.

2. Lie algebras of differential operators

In this section, we briefly review the basic theory of Lie algebras of first-order scalar
differential operators on the complex line, which will serve as a helpful guide in what
follows.

Let D1 denote the Lie algebra of differential operators of the form

T = f (z)∂z + g(z) (2.1)

wheref andg are analytic functions of a complex variablez, and the Lie bracket is given
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Table 3. Odd subspaces for Lie algebras of types2
0.

Label s1 Rules

21 m0(〈θ∂z, θ〉) r > 1⇒ m = n+ 1 ands = −1, 0
r = 0, s > 0, m > 0⇒ n > m+ s − 1

22 m0(〈∂θ , θ〉) r = 0 if ε = 1
r > 1⇒ m = n+ 2α;α semi-integer> −(n+ 1)/2
s > m+ n+ 2r if m, n > 0 or r > 1

23 〈θ∂z, ∂θ + ε̂zm+1θ; ziθ〉 ε̂ = 1⇒ s = m+ 1= −2α andε = 0
ε̂ = 0⇒ s = m,m+ 1

24 〈θ(z∂z + δ), θ∂z, ∂θ + ε∗ε̂θ; ziθ〉 α = 0 and either:
(i) s = m, δ = β and ε̂ = 0
(ii) s = m+ 1= 0

25 〈θ∂z + ε̂∗z∂θ , ε̂z∂θ , ∂θ ; ziθ〉 s = m+ 1 and either:
(i) ε = β = 0, α = 1
(ii) ε = ε̂ = 1, β = −γ

26 〈θ∂z + ∂θ ; ziθ〉 ε = 0, α = 1
2 , s = m,m+ 1

27 〈θz∂z + ∂θ + δθ, θ∂z; ziθ〉 ε = α = 0 and either:
(i) s = m, δ = β
(ii) s = m+ 1= 0

In cases 23–27 the indexi = 0, . . . , m.

Table 4. Odd subspaces for Lie algebras of types3
0.

Label s1 Rules

31 〈θzi−1(z∂z + 2βi/m)〉 α = 1− m
2 , andβ = 0 if m = 0

32 〈ziθ; θzm+1(z∂z + 2β), θzj ∂z〉 2α = −m ; j = 0, . . . , m+ 1

33 〈zi∂θ 〉 2α = m

34 〈∂θ + ε∗ε̂θ; ε̂θ, θzj−1(z∂z + jβ)〉 α = 0 ; j = 0, 1, 2
1 ∈ s3

0 if ε̂ = 1

35 〈θz∂z + ε∗z∂θ + 2βθ, θ∂z + ε∗∂θ , εz∂θ , ε∂θ 〉 2α = 1; γ = −2β if ε = 1

36 〈θ∂z, zj ∂θ 〉 α = 1; β = 0; j = 0, 1, 2

The indexi takes valuesi = 0, . . . , m.

by the usual commutator. There are two pseudogroups of transformations acting naturally
onD1 which preserve its Lie algebra structure, namely local diffeomorphismsz̄ = ϕ(z) and
gauge transformations by a non-vanishing functionu(z). The action of these transformations
on an operatorT is given by

T 7→ T with T (z̄) = u(z)T (z)u(z)−1.

We shall say that two Lie subalgebras ofD1 areequivalentif they can be mapped into each
other by afixed combination of a local diffeomorphism and a gauge transformation.
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Table 5. Even QES subalgebrass0 and associated modulesn.

s0 n Rules

s0
0 = 〈εθ∂θ + α; 1〉 n0.0 = 〈fj + gj θ〉 ε = α = 0

n0.1 = 〈fj , gkθ〉 ε = 1

s1
0 = 〈∂z, εθ∂θ + α; 1〉 n1.0 = n(N) ε = α = 0

n1.1 =⊕ν∈N n1
ν ⊕ n2

ν ε = 1

s2
0 = 〈∂z, z∂z + αθ∂θ + β; εθ∂θ + γ, 1〉 n2.0 = n0 ε = 0 ; t > 1⇒ α = p − q

n2.1 = 〈zj , zkθ〉 ε = 1

s3
0 = 〈∂z, z∂z + αθ∂θ + β, z2∂z n3.0 = 〈zj (1+ cθ)〉 ε = α = 0 ; 2β = −p
+2αzθ∂θ + 2βz; εθ∂θ + γ, 1〉 n3.1 = 〈zj 〉 2β = −p

n3.2 = 〈zkθ〉 2(α + β) = −q
n3.3 = 〈zj , zkθ〉 2β = −p ; 2(α + β) = −q

The indicesj, k take valuesj = 0, . . . , p, k = 0, . . . , q.

Table 6. Odd subspacess1 for even QES Lie algebrass0
0 ands-modulesn.

Label s1 n Rules

01 〈θ(φi∂z + ωi)〉 n0.ε + s1[n0.ε ]

02a 〈χi∂θ 〉 n0.ε + s1[n0.ε ]

02b 〈∂θ + ε̂∗θ; ε̂θ〉 〈fj + gj θ, gj + fj θ〉 ε̂ = ε = 0, 1 ∈ s0
0

〈fj , fj θ〉 ε̂ = 1 1∈ s0
0.

The indicesi, j take valuesi = 1, . . . , m, j = 1, . . . , p.

The Lie algebraD1 naturally splits into the semidirect product of the subalgebras of
vector fieldsV and multiplication operatorsM:

D1 = V nM.

The classification up to a change of variable of the finite-dimensional subalgebras ofV is
due to Lie [10].

Lemma 2.1.Every non-zero finite-dimensional Lie algebra of vector fields on the line is
related by a local change of variable to one of the following Lie algebras:

h
1 = 〈∂z〉 h

2 = 〈∂z, z∂z〉 h
3 = 〈∂z, z∂z, z2∂z〉.

Since the natural projectionπ : D1 → V mapping a differential operator (2.1) to its
vector field partf (z)∂z defines a Lie algebra homomorphism, and gauge transformations
leave the vector field part unaffected, one may use Lie’s classification of vector fields to
derive the classification of all finite-dimensional subalgebras ofD1 [11, 9].

Theorem 2.2.Let g be a finite-dimensional subalgebra ofD1. Theng is equivalent to one
of the following Lie algebras:

(i) g0 = 〈gi(z)|16 i 6 m〉, where the functionsgi are linearly independent.
(ii) g1 = 〈∂z, zieµz|06 i 6 mµ,µ ∈ M〉. HereM denotes a finite collection of complex

numbers.
(iii) g2 = 〈∂z, z∂z, zi |06 i 6 m〉; ĝ2 = 〈∂z, z∂z + α〉, whereα ∈ C.
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Table 7. Odd subspacess1 for even QES Lie algebrass1
0 ands-modulesn.

Label s1 n Rules

11 m(〈θ∂z, θ〉,M) n1.ε + s1[n1.ε ]

12a 〈zieµz∂θ 〉 n1.ε + s1[n1.ε ] 0 6 i 6 mµ µ ∈ M

12b 〈∂θ + ε̂θ; ε̂∗θ〉 n1.ε̂∗ 1 ∈ s1
0, andε = 1⇒ ε̂ = 0

pν = qν ; cν,k = δk,1

13 〈θ∂z, ∂θ + ε̂θ; θ〉 〈n1.1; ε̃zq0+1(1+ ε̂θ)〉 θ ∈ s1⇒ 1 ∈ s1
0and̃ε = 0

ε̂ = 1⇒ 1 ∈ s1
0andε = 0

pν = qν

14 〈θ∂z + ∂θ ; θ〉 n1.0 θ /∈ s1. If ν 6= 0, we have:

(i) pν = qν

(ii) cν,l = (qν+l)!
(qν+1)! ν

3
2−lal with

al fixed constants andl = 1, . . . , tν

p0 = q0, q0 + 1; t0 = 0

n1.1 θ ∈ s1
1; 1 ∈ s1

0 ; pν = qν
The parameterε = 0 in case 14.

(iv) g3 = 〈∂z, z∂z, z2∂z + 2αz, 1〉, whereα ∈ C; ĝ3 = 〈∂z, z∂z + α, z2∂z + 2αz〉, where
α ∈ C.

3. Lie superalgebras of differential operators

We now focus our attention on 2×2 matrix-valued Lie superalgebras of first-order differential
operators. LetD denote the associative algebra of all 2× 2 matrix differential operators on
a complex variablez. We introduce aZ2-grading inD in the usual way: an operator

T =
(
a b

c d

)
wherea, b, c, andd are scalar differential operators, is said to beeven if b = c = 0, and
odd if a = d = 0. This grading, combined with the generalized Lie product

[A,B]s = AB − (−1)degA degBBA

endowsD with a Lie superalgebra structure. We shall be interested in finite-dimensional
graded subalgebras lying in the graded subspaceD(1) ⊂ D of first-order differential
operators. Two such graded subalgebrasL and L will be consideredequivalentif their
elementsT ∈ L andT ∈ L are related by afixed local change of variablēz = ϕ(z) and a
gauge transformation consistent with the grading:

T 7→ T with T (z̄) = U(z)T (z)U(z)−1 (3.1)
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Table 8. Odd subspacess1 for even QES Lie algebrass2
0 ands-modulesn.

Label s1 n Rules

21 m0(〈θ∂z, θ〉) n2.ε + s1[n2.ε ] r > 1⇒ m = n+ 1

22a 〈zi∂θ 〉 n2.ε + s1[n2.ε ] 0 6 i 6 m

22b 〈∂θ + ε̂θ; ε̂∗θ〉 n2.ε̂∗ 1 ∈ s2
0, and ε̂ = 1⇒ ε = α = 0

p = q ; c = 1

23 〈θ∂z, ∂θ + ε̂θ; θ〉 〈n2.1; ε̃zq+1(1+ ε̂θ)〉 θ ∈ s1⇒ 1 ∈ s2
0and̃ε = 0

ε̂ = 1⇒ 1 ∈ s2
0andε = α = 0

p = q

24 〈θ(z∂z + δ), θ∂z, ∂θ + ε∗ε̂θ; θ〉 〈n2.1; ε̃zq+1(1+ ε∗ε̂θ)〉 α = 0 p = q
1 /∈ s2

0⇒ θ /∈ s1, δ = β, ε̂ = 0
ε̃ = 1⇒ θ /∈ s1, δ = −(q + 1)

25 〈θ∂z + ε̂∗z∂θ , ε̂z∂θ , ∂θ 〉 n2.1 p = q + 1 and either:
(i) ε = β = 0 α = 1
(ii) ε = ε̂ = 1 β = −γ

26 〈θ∂z + ∂θ ; θ〉 n2.1 θ ∈ s1⇒ 1 ∈ s2
0 andp = q

θ /∈ s1⇒ p = q, q + 1

27 〈θz∂z + ∂θ + δθ, θ∂z; θ〉 〈n2.1; ε̃zq+1(1 ε = α = 0p = q
+(δ + q + 1)

1
2 θ)〉 1 /∈ s2

0⇒ θ /∈ s1 andδ = β
θ ∈ s1⇒ ε̃ = 0

where the 2× 2 invertible complex matrixU(z) is either diagonal or antidiagonal. This is
a very natural notion of equivalence in the context of QES problems; indeed, ifN is an
L-module of vector-valued functions andL is equivalent toL under the mapping (3.1), then
N = UN is an invariant module forL. The first aim of this paper consists of classifying
under the above equivalence all finite-dimensional graded subalgebras ofD contained in
D(1).

We begin with the following elementary result, that we shall state without proof.

Lemma 3.1.Let L ⊂ D(1) be a graded subalgebra ofD, and letL0 andL1 denote its even
and odd subspaces, respectively. We then have:

(i) either all the elements ofL1 are of the form

T1 =
(

0 φ∂z + ω
χ 0

)
(3.2)

or all its elements are of the form

T̃1 =
(

0 χ

φ∂z + ω 0

)
(3.3)

whereφ, ω, andχ are analytic functions ofz.
(ii) If L1 is non-zero, the elements ofL0 are of the form:

T0 =
(
f ∂z + h1 0

0 f ∂z + h2

)
(3.4)

wheref , h1, andh2 are analytic functions ofz.
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Table 9. Odd subspacess1 for even QES Lie algebrass3
0 ands-modulesn.

Label s1 n Rules

31 〈θzi−1(z∂z + 2βi/m)〉 〈1+ θ〉 ε = β = 0, m = 2
〈1〉 β = 0
n3.2 m > 1; 2β = m− q − 2
n3.3 m = 1, 2; 2β = m− q − 2= −p

32 〈ziθ; θzm+1(z∂z + 2β), θzj ∂z〉 n3.2, n3.3 2α = −m ; j = 0, . . . , m+ 1
2β = m− q = −p

33 〈zi∂θ 〉 n3.1, n3.3 2α = m; −2β = p = m+ q

34a 〈∂θ ; θ, θzj−1(z∂z + jβ)〉 n3.1 θ /∈ s1; 2β = −p
n3.3 2β = −p = −q, andθ ∈ s1⇒ 1 ∈ s3

0

34b 〈∂θ + θ; ε̂θzj−1(z∂z + jβ)〉 n3.0 c = 1; 2β = −ε̂∗p
n3.3 2β = −p = −q

35 〈θz∂z + ε∗z∂θ + 2βθ, 〈1〉 2α = 1; β = 0
θ∂z + ε∗∂θ , εz∂θ , ε∂θ 〉 n3.3 2α = 1; −2β = p = q + 1

36 〈θ∂z, zj ∂θ 〉 〈1〉 α = 1; β = 0; j = 0, 1, 2

The indexi takes valuesi = 0, . . . , m. In case 31, α = 1− m
2 andβ = 0 if m = 0. In cases

34, α = 0 andj = 0, 1, 2. In case 34b, we also haveε = 0 and 1∈ s3
0. In case 35, γ = −2β if

ε = 1.

Let us denote byD1 (respectivelyD̃1) the graded subalgebra ofD generated by all
differential operators of the formT0 and T1 (respectivelyT0 and T̃1) in (3.4) and (3.2)
(respectively (3.4) and (3.3)). The graded subalgebrasD1 andD̃1 are equivalent, since they
are related by a gauge transformation with constant matrix

Ũ =
(

0 1
1 0

)
.

Furthermore, the gauge transformations preservingD1 (or D̃1) are generated by diagonal
matricesU(z) = diag(α, β), where α and β are non-vanishing analytic functions of
z. Therefore, without any loss of generality, we can limit ourselves to classifying
the finite-dimensional graded subalgebras ofD1 under local diffeomorphisms and gauge
transformations by diagonal matrices.

There is an alternative formalism for describing Lie superalgebras of differential
operators which uses Grassmann variables. The matrix classification scheme described
above is completely equivalent to classifying all finite-dimensional subalgebrass of the
Lie superalgebrad1 of first-order differential operators in one ordinary variablez and one
Grassmann variableθ which take values in the one-generator Grassmann algebra31. The
even and odd subspaces ofd1 are generated by differential operators of the form

T0 = f (z)∂z + g(z)θ∂θ + h(z) (3.5)

and

T1 = θφ(z)∂z + χ(z)∂θ + ω(z)θ (3.6)

respectively, wheref , g, h, φ, χ , and ω are analytic functions ofz. The appropriate
equivalence transformations are in this case changes of the independent variables preserving
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the relation{∂θ , θ} = 1, namely

z̄ = ϕ(z) θ̄ = β(z)θ (3.7)

and gauge transformations with a gauge factor of the formu = α(z), whereα andβ are
non-vanishing analytic functions ofz. The standard identifications

θ ↔ σ+ ∂θ ↔ σ− with σ+ = (σ−)t =
(

0 1
0 0

)
lead directly to the equivalence of both formalisms. For the sake of simplicity, we shall
use the Grassmann variable notation in the following. Our first step will thus be to classify
all finite-dimensional Lie subalgebrasl of d1

0, the even subspace ofd1. We will then
restrict ourselves to the subalgebrass0 ⊂ d1

0 which admit a non-trivial finite-dimensional
odd subspaces1 satisfying the conditions

[s0, s1] ⊂ s1 {s1, s1} ⊂ s0. (3.8)

We will determine all such odd subspacess1, and then obtain the finite-dimensional modules
of functionsn ⊂ C∞(31) ' C∞(C)⊗〈1, θ〉 associated to each Lie superalgebras = s0⊕s1.
Note that the31-valued functionf (z)+g(z)θ is identified with the two-component function
(g(z), f (z))t in the matrix formalism.

4. Lie algebras of even differential operators

In this section we classify the finite-dimensional subalgebrasl of the even subspaced1
0 of

d1.
The Lie algebrad1

0 admits the following natural decomposition:

d
1
0 = V n a

wherea is the Abelian Lie algebra of all operators of the form

T̂0 = g(z)θ∂θ + h(z).
We first observe that the projectionπ : d1

0 → V mapping an even differential operator of
the form (3.5) tof ∂z ∈ V is a homomorphism of Lie algebras. Moreover, bothl and its
image under a change of the odd variable,

z̄ = z θ̄ = β(z)θ (4.1)

and/or a gauge transformation clearly have the same projection inV. Therefore,π(l) is
either zero or equivalent under a change of the even variable

z̄ = ϕ(z) θ̄ = θ
to one of the three Lie algebrashi in lemma 2.1. The situation in this respect is completely
analogous to the one in the scalar case. Moreover, the Lie algebrav of all vector fields of
the form

T̃0 = f (z)∂z + g(z)θ∂θ (4.2)

is isomorphic toD1, under the identification

T̃0 7→ f (z)∂z + g(z).

Under this identification, a gauge transformation inD1 by a non-vanishing functionu = α(z)
becomes a change of the odd variable inv of the form θ̄ = θ/α. Thus, the classification
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of the finite-dimensional subalgebras ofD1 in theorem 2.2 and the classification of the
finite-dimensional subalgebras ofv under changes of variables (3.7) are identical.

We need to introduce some additional notation at this stage. LetV = 〈v1, v2〉 be an
abstract two-dimensional complex vector space. We define aV -translation bimoduleas a
finite-dimensionalh1-invariant subspace ofM⊗V . The following result provides a detailed
description ofV -translation bimodules.

Proposition 4.1.The most generalV -translation bimodule is a direct sum

m(V ,M) =
⊕
µ∈M
i=1,2,3

m
i
µ(V )e

µz

whereM is a finite collection of complex numbers, and

m
1
µ(V ) = 〈zk v1|06 k 6 mµ〉 m

2
µ(V ) = 〈zk v2|06 k 6 nµ〉

m
3
µ(V ) =

〈
zmµ+k v1+ znµ

k∑
j=1

c
µ,k

j zj v2|16 k 6 rµ
〉

(4.3)

with

c
µ,k

j = (mµ + k)!(nµ + 1)!

(nµ + j)!(mµ + k − j + 1)!
cµ,k−j+1 (4.4)

wherecµ,1, . . . , cµ,rµ ∈ C, andcµ,1 6= 0. By convention, the indicesmµ, nµ, andrµ take
the values−1,−1, and 0, respectively, when their corresponding modulesmi

µ(V ) are zero.

Remark. The notationmi
µ(V ) is an abbreviated notation, since the latter sets actually

depend onµ through the parametersmµ, nµ, rµ andcµ,l .

Proof. The only non-trivial point is the structure of the modulem3
µ(V ) of mixedvectors.

A mixed vectorg v1+ h v2 may always be chosen to be proportional to

zmµ+keµzv1+
∑
ν∈N

16j6sν

c
µ,k

ν,j z
nν+jeνzv2

with k = 1, . . . , rµ and complex numberscµ,kν,j . Acting with ∂z on each of these vectors for

k = 1, . . . , rµ, we immediately obtaincµ,kν,j = δµν cµ,kj , with cµ,kj given by (4.4) forj 6 k
andcµ,kj = 0 for j > k. �

Hereafter, we shall use the following conventions. The highest valueimax of an indexi
labelling a collection of operatorsS = {Ti |imin 6 i 6 imax} will be set toimin− 1 whenever
S = ∅. The lettersα, β, γ, δ will denote complex numbers, while the letterc will be
reserved for anon-zerocomplex number. We shall also define the setm0(V ) by

m0(V ) = m(V , {0}) with c0,k = δk1c.

Explicitly,

m0(V ) = 〈ziv1, z
j v2, z

k(zmv1+ ckznv2)〉 (4.5)

with 06 i 6 m , 06 j 6 n , 16 k 6 r , and

ck = (m+ k)!(n+ 1)!

(n+ k)!(m+ 1)!
c. (4.6)

Note thatck = c if m = n.
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We are now ready to state the classification theorem for the finite-dimensional
subalgebras ofd1

0. In what follows, a semicolon will be used to separate those generators
which characterize a given set from those which may or may not be present, and

a0 = 〈θ∂θ , 1〉.
Theorem 4.2.Let l be a finite-dimensional subalgebra ofd1

0. Thenl is equivalent to one of
the following Lie algebras:

(i) l0 = 〈gi(z)θ∂θ + hi(z)|16 i 6 m〉, where the operators are linearly independent.
(ii) l1 = 〈∂z;m(a0,M)〉, wherem(a0,M) is ana0-translation bimodule.
(iii) l2 = 〈∂z, z∂z + αθ∂θ + β;m0(a0)〉, wherem0(a0) is given by (4.5). We also have

the constraintm = n if r > 0.
(iv) l3 = 〈∂z, z∂z + αθ∂θ + β, z2∂z + 2αzθ∂θ + 2βz; θ∂θ + γ, 1〉.

Remark. Some of the generators may be simplified depending on the presence of the
optional generators. For instance, we may takeα = β = 0 in l2 if m, n > 0, or the second
generator ofl3 may be taken asz∂z + β if θ∂θ + γ is present.

Proof. Case (i) is obvious. Let us start withl1. In view of the isomorphisma 'M⊗ a0,
we have:

l
1 = 〈∂z + gθ∂θ + h,m(a0,M)〉

whereg andh may be eliminated by an appropriate change of the odd variable (4.1) and
a gauge transformation. Consider nowl2. Commutingz∂z + gθ∂θ + h with the elements
of m(a0,M) we conclude thatM = {0}. If there are mixed operators present, that is,
if r = r0 6= 0 in (4.3), thenm = n and c0,k

j = δkj c. Furthermore, we may eliminate
g (respectivelyh) from z∂z by a suitable change of the odd variable (respectively gauge
transformation) unless it is a constant. Finally, we may also have a generatorz2∂z+gθ∂θ+h.
Commuting it with the generators inm0(a0) we conclude thatl3 ∩ a is a subspace of
〈θ∂θ + γ, 1〉. Since

[∂z, z
2∂z + gθ∂θ + h] = 2z∂z + g′θ∂θ + h′

we conclude thatg = 2αzθ∂θ andh = 2βz, for α, β ∈ C. �

5. The odd subspaces

We will next determine the possible finite-dimensional odd subspacess1 for each of the
families of even Lie algebrasli of theorem 4.2. These odd subspaces must verify the
commutation relations (3.8). Let us remark that we are left with very few equivalence
transformations preserving the canonical formsli listed in theorem 4.2 to simplify the odd
subspaces. Despite this, we shall see that some of the Lie algebras of theorem 4.2 admit
only trivial finite-dimensional odd subspaces.

Lemma 5.1.Let s0 be a subalgebra ofd1
0, and assume thats1 is a non-trivial finite-

dimensional odd subspace fors0. If g(z)θ∂θ + h(z) belongs tos0, then g(z) must be a
constant.

We thus have the following.

Corollary 5.2. Let s be a finite-dimensional graded subalgebra ofd1 with a non-trivial odd
subspaces1. The even subalgebras0 of s is then equivalent to one of the following Lie
algebras:

(i) s0
0 = 〈εθ∂θ+h1(z);hl(z)|26 l 6 s〉, where the functionshl are linearly independent.



6890 F Finkel et al

(ii) s1
0 = 〈∂z; εθ∂θ + αzs0+1, zleσz|0 6 l 6 sσ , σ ∈ 6〉. Here6 is a finite collection of

complex numbers,s0 = −1 if 0 /∈ 6, andα = 0 if ε = 0.
(iii) s2

0 = 〈∂z, z∂z + αθ∂θ + β; εθ∂θ + γ, zl|06 l 6 s〉.
(iv) s3

0 = 〈∂z, z∂z + αθ∂θ + β, z2∂z + 2αzθ∂θ + 2βz; εθ∂θ + γ, 1〉. The parameterε
takes values 0, 1.

In tables 1–4, we present the possible odd subspaces corresponding to each family of
Lie algebrassi0 in corollary 5.2. It is convenient at this stage to introduce the following
convention: the parametersε, ε̂ and ε̃ will take the values 0, 1, andε∗ = 1− ε, ε̂∗ = 1− ε̂.

As an illustration of how these tables were constructed, we shall examine the Lie
superalgebras of types 13 and 14 in table 2. LetT1 ∈ s1 be an operator of the form (3.6),
with φ 6= 0. If χ = 0 for all such operators, then another operatorT̃1 = χ̃∂θ + ω̃θ ,
with χ̃ 6= 0, must be present ins1. Let us assume thatε = α = 0 in s1

0, andχ 6= 0.
Anticommuting T1 with itself we conclude thatφχ is a constant andφχ ′ = 0. Thus
T1 = θ∂z + c∂θ + ωθ for some constantc 6= 0. Since [∂z, T1] = ω′θ , we conclude that
ω′ ∈ 〈zieµz|0 6 i 6 mµ,µ ∈ M〉. Therefore,ω = δzm0+1 for someδ ∈ C. Computing
[zleσz, T1] we conclude thatmσ > sσ for 0 6= σ ∈ 6 andm0 > s0 − 1. Conversely, from
{T1, z

ieµzθ} we deduce thatsµ > mµ for 0 6= µ ∈ M and s0 > m0 + 1 (or s0 > m0 if
δ = 0). In any case, we can gauge away the termδzm0+1 in T1 and rescaleθ so thatc = 1
without affectings1

0. We obtain the Lie superalgebra 14 in table 2. The choiceχ = 0 in T1

leads to the case 13.

6. The QES Lie superalgebras

In this section we will determine which of the Lie superalgebrass obtained in section 5
(whose odd subspaces1 is non-zero) are QES, i.e. admit a non-trivial finite-dimensional
module n ⊂ C∞(31), and will classify all such modules. We start with the following
elementary result.

Lemma 6.1.Let s be a finite-dimensional graded subalgebra ofd1 with a non-trivial odd
subspaces1. Thens admits a non-zero finite-dimensional module of functionsn ⊂ C∞(31)

if and only if s0 ∩ a ⊂ a0.

We shall denote the most general〈1, θ〉-translation bimodule by

n(N) =
⊕
ν∈N
i=1,2,3

n
i
νe
νz

whereN is a finite collection of complex numbers, and

n
1
ν = 〈zk|06 k 6 pν〉 n

2
ν = 〈zkθ |06 k 6 qν〉

n
3
ν =

〈
zpν+k + zqν

k∑
j=1

c
ν,k
j zj θ |16 k 6 tν

〉
.

(6.1)

As in section 4,

c
ν,k
j =

(pν + k)!(qν + 1)!

(qν + j)!(pν + k − j + 1)!
cν,k−j+1

wherecν,1, . . . , cν,tν ∈ C, andcν,1 6= 0. We shall also consider the set

n0 = n({0}) with c0,k = δk1c.

In table 5, we present the list of the even QES subalgebrassi0 in corollary 5.2. The
calculations needed to complete table 5 present no difficulties. In tables 6–9, we present
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the possible odd subspacess1 corresponding to the even QES subalgebras in table 5, along
with the invariant modules of functions fors = s0 ⊕ s1. The image of a modulen under
the action of the elements ofs1 will be denoted bys1[n].

The case 14 in table 7 perhaps deserves some special attention. According to table 5,
we have6 = ∅, {1}. It follows from table 2 thats1 = 〈θ∂z + ∂θ ; θ〉, andθ ∈ s1⇒ 1 ∈ s1

0.
Assume first thatθ /∈ s1. It is easy to see thatpν = qν in equation (6.1) forν 6= 0.
Remarkably, forν 6= 0 the parameterscν,l , l = 1, . . . , tν , defining themixed functions in
n3
ν are no longer arbitrary but of the form

cν,l = (qν + l)!
(qν + 1)!

ν
3
2−lal

where al are fixed constants that can be determined recursively from the condition
(θ∂z + ∂θ )[n3

ν ] ⊂ n3
ν/n

2
ν . The first 10 constants are

al = 1,
1

2
,

1

23
,

1

24
,

5

27
,

7

28
,

3× 7

210
,

3× 11

211
,

3× 11× 13

215
,

5× 11× 13

216
, . . . .

Finally, it is easy to see thatp0 = q0, q0 + 1 and t0 = 0. If θ ∈ s1, then 1∈ s1
0 and the

associated module isn1.1, with the constraintpν = qν for all ν ∈ N .
The parametersα and β appearing in the superalgebras of types3 are quantized.

This phenomenon, thequantization of the cohomology, has been noticed before in the
case of finite-dimensional QES Lie algebras and has received some study, [7, 13]. The
parameterα is quantized for all finite-dimensional Lie superalgebras of the types3,
whereasβ is only quantized in every case after imposing the QES condition. Finally,
it is also worth mentioning that the Lie superalgebraosp(2, 2) ' sl(2|1), extensively used
in the construction of QES matrix Hamiltonians (see for instance [1, 11, 12], is the QES
superalgebra 35 in tables 4 and 9 withε = 1.
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[3] Finkel F, Gonźalez-Ĺopez A and Rodrı́guez M A Quasi-exactly solvable spin 1/2 Schr̈odinger operatorsJ.

Math. Phys.in press
[4] Finkel F and Kamran N On the equivalence of matrix valued differential operators to Schrödinger formJ.

Nonlin. Math. Phys.in press
[5] Finkel F and Kamran N 1996 The Lie algebraic structure of differential operators admitting invariant spaces

of polynomialsPreprint q-alg/9612027
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