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Abstract. In this paper, we study Lie superalgebras ofx22 matrix-valued first-order
differential operators on the complex line. We first completely classify all such superalgebras
of finite dimension. Among the finite-dimensional superalgebras whose odd subspace is non-
trivial, we find those admitting a finite-dimensional invariant module of smooth vector-valued
functions, and classify all the resulting finite-dimensional modules. The latter Lie superalgebras
and their modules are the building blocks in the construction of quasi-exactly solvable quantum
mechanical models for spié-particles in one dimension.

1. Introduction

The discovery of quasi-exactly solvable (QES) spectral problems over the past decade has
been a continuous source of interesting mathematical problems. The characteristic feature
of a QES Hamiltonian is that a non-trivial portion of its spectrum, but not necessarily all
of it, can be computed algebraically. Thus, QES spectral problems occupy an intermediate
position between exactly solvable problems, whose spectrum can be completely described,
and the vast majority of non-solvable ones. Lie algebras of differential operators have been
used extensively to generate physically interesting QES8lainger operators, [14—16]; see

also the review book [17]. The basic idea underlying the application of Lie algebras of
differential operators to constructing QES models can be summarized as folloyss #

Lie algebra of first-order differential operators with an invariant finite-dimensigmabdule

of smooth fuctionsV, then any scalar Hamiltonia# = —A + V which can be expressed

as a quadratic combination in the generatorg,of

H=Y caTT"+ T +co (T% € g) (1.1)
a,b a
will automatically preserveV’. Consequently, if the functions jN satisfy suitable boundary
conditions, one can compute dikh eigenfunctions and eigenvalues by diagonalizing the
finite matrix which represent& in EndN. Therefore, the classification under some well
adapted notion of equivalence of all finite-dimensional Lie algebras of first-order differential
operators admitting an invariant module of functions (henceforth cglies Lie algebrayis
a good starting point to obtain large families of QES Hamiltonians. In the one-dimensional
scalar case the classification is very simple. Indeed, every finite-dimensional QES Lie
algebra in one real or complex variable is isomorphic to a subalgebra of (a central extension
of) sl,, [9, 11, 15]. The classification of finite-dimensional QES Lie algebras in two variables
is considerably more involved. There are several inequivalent families of QES Lie algebras,
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some of them of arbitrary dimension, and the real and complex classifications no longer
coincide [6, 8].

The above classification is not, however, the end of the problem. One still has to
determine the conditions under which a quadratic combination of the form (1.1) is equivalent
to a Schodinger operator—A + V. In the one-dimensional case, it turns out that any
guadratic combination (1.1) may be written (locally) in Sidinger form by the combination
of a change of the independent variable and a gauge transformation with a non-vanishing
function (up to a sign). The situation in higher dimensions is again more complicated.
Explicit necessary and sufficient conditions for the equivalence under local diffeomorphisms
and gauge transformations of scalar second-order differential operators were first found by
Cotton [2]. As a special case, one obtains conditions for the equivalence of a second-order
differential operator to a Scédinger operator acting on a (in general) curved space-time.
These conditions have been solved only in some particular cases, and appear to be too
complicated to be solved in full generality; see [12] for an in-depth study.

This formalism may be extended to deal with matrix-valued differential equations,
suitable for the description of the dynamics of particles with non-zero spin, [14,1, 3], or
the treatment of coupled-channel scattering problems [18]. The procedure for constructing
matrix-valued QES Hamiltonians is essentially the same as in the scalar case, with the role
of the Lie algebray now being played by &ie superalgebraS of matrix-valued differential
operators with an invariant subspace of vector-valued functions, [3]. In prinépheed not
be finite-dimensional; in practice, however, the only examples constructed so far with this
method are associated to finite-dimensional Lie superalgebras, [14,1, 3]. Lie superalgebras
of differential operators are significantly less understood than ordinary Lie algebras. In fact,
to the best of the authors’ knowledge, no general classification of finite-dimensional Lie
superalgebras of differential operators has ever been attempted. The aim of this paper is
precisely that of classifying all QES Lie superalgebras ef2matrix first-order differential
operators in one complex variable. The Lie superalgebras thus obtained can be readily used
to construct new examples of second-ordex 2 matrix-valued QES operators, by taking
guadratic combinations in the generators@fand performing a suitable change of the
independent variable and/or a gauge transformation. Necessary and sufficient conditions
for the equivalence of a 2 2 matrix-valued differential operator to a Sédinger operator
were obtained in [3,4]. A number of QES Lie superalgebras preserving a two-component
vector-valued module of polynomials in two complex variables were recently studied in [5].

This paper is organized as follows. In section 2 we summarize the main results
concerning Lie algebras of first-order scalar differential operators on the complex line. In
section 3 we outline our classification scheme for the finite-dimensional Lie superalgebras
& of 2 x 2 matrix-valued first-order differential operators. We start with a basic result
describing the structure of the even and odd subspaces. ofThe classification of all
such Lie superalgebra$ is then shown to be completely equivalent to classifying the
finite-dimensional graded subalgebeasf the Lie superalgebra! of first-order differential
operators in one ordinary variable and one Grassmann variable taking values in the one-
generator Grassmann algebsd. In section 4 we classify all possible even subalgeliras
of 9. The concept of a translation bimodule introduced in this section turns out to play an
essential role in the classification, as later shown in sections 5 and 6. Section 5 is devoted
to the classification of the odd subspaegsorresponding to each subalgebmbtained in
section 4. We first state a necessary conditiorf foradmit a non-zero odd subspage The
list of the even subalgebrag and their corresponding non-trivial odd subspageis then
presented in tables 1-4. Finally, in section 6 the classification is completed by finding all
the Lie superalgebras with non-trivial odd subspace that admit a finite-dimensional module
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Table 1. Odd subspaces for Lie algebras of twﬂa

Label s; Rules
01 (0(id; + i), hj¢i0) 1<i<m
02 (xido + wi0) 1<i<myw =0ife=1

Xiok + Xrwi € 58

Table 2. Odd subspaces for Lie algebras of twfp

Label s1 Rules

1L m((09;, 6), M) Nuto = So +my + 1y — 800850 if
@) m,>00rr, >1
(i) o € =, with & £ 0 if 59 =0

1 m((dg, 0), M) rp,=0ife=1
My, N 2 0= Sutpp Z My +np.
ru=2lng 20= s >my +ry+ng
ruz2lmg 20=s,45 >2n,+ry+mg
rusrp =z Lmy +ng #Fmg+ny
= Suqp = rptrp+Hmaximy +ng,mg +ny).
rusti = Lomy +ng =my +ny, ST, # ¢ for somep
= Surp =z my +ng +maXs£ﬂ#_mP

13 (09, 39 + €zm0t19; zle"9) é=1=e=a=0.
*=M*, s, =m,. Either
(i)@:a:0:>s0:mo,mo+l
(i) €=0,a # 0= so=mo
(i) é=1=s0=mo+1

14 (03, + d9; 7' €46) e=a=0
¥ = M*, s, =my, so=mo, mo+1

The setS;’:ﬂ C Z* in case 3 is defined as

Sy =Gk j, DIk+j=k+j=p
and .

APt 201 <k <1< f<k <)
In cases 4 and 4 the indexi =0, ..., m,, u € M.

n C C®(AY). The associated finite-dimensional modules are also classified, and the results
are summarized in tables 5-9.

2. Lie algebras of differential operators

In this section, we briefly review the basic theory of Lie algebras of first-order scalar
differential operators on the complex line, which will serve as a helpful guide in what
follows.

Let D denote the Lie algebra of differential operators of the form

T = f(z)9;+g() (2.1)
where f and g are analytic functions of a complex variakleand the Lie bracket is given
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Table 3. Odd subspaces for Lie algebras of twﬁe

Label s1 Rules

21 mo((09, 0)) r>1=m=n+1ands=-1,0
r=0,s>0m>20=>n>m+s—1

2 mo({(d,0)) r=0ife=1
r> 1= m=n+ 2a; a semi-integer> —(n + 1)/2
s>m+n+2rifmn>00rr>1
23 (09,35 + €7 T10; 710) é=1=>s=m+1=-20vande =0
E=0=s=mm+1
2, (0(zd.+8),00., 09 + €*é0; 7/0) « =0 and either:
i) s=m,8=Bandé =0
(i) s=m+1=0

25 (00, +é*20p, €200, 3p;2°0) s =m 4+ 1 and either:
()e=p=0,x=1
(He=é=1,8=—y

25 (982+89;zi9) e=0,a=%,s=m,m+1
27 (020, + 09 + 86, 00;; 7'0) € = a =0 and either:
{)s=m,86=p8

(i) s=m+1=0

In cases 2-2; the indexi =0,...,m.

Table 4. Odd subspaces for Lie algebras of tw@

Label 51 Rules

3 (0277 1(z0, + 2Bi /m)) a=1-%,and=0ifm=0
3 (z'0; 02120, + 2B), 027 d,) 20=-m; j=0,....m+1
33 (z'3p) 20 =m

3 (8p + €*€0; €6,02171(z0, + jB)) a=0; j=012

lesiife=1
35 (QZBZ +€*Z39 +2ﬂ0,931+€*39,€Z39,639) 20(:1;)/:—2/3 ife=1

36 (09,27 99) a=1;8=0;,j=012

The indexi takes valueg =0, ..., m.

by the usual commutator. There are two pseudogroups of transformations acting naturally
on D! which preserve its Lie algebra structure, namely local diffeomorphisesy(z) and

gauge transformations by a non-vanishing functién). The action of these transformations

on an operatof is given by

T T with T(2) = u()T (2)u(z)

We shall say that two Lie subalgebrasmt areequivalentif they can be mapped into each
other by afixed combination of a local diffeomorphism and a gauge transformation.
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Table 5. Even QES subalgebrag and associated modules

” a Rules
59 = (695 + 3 1) n%=(fj+g6) e=a=
nOAlz(fj’gkg) e=1
55 = (3, €00 +o; 1) nt0=n@) e=a=0
=@ ynlen? e=1
55 = (0:.29; + a8y + 0y +y.1) n*O=no €=0izl=a=p—q
) e=1
58:(31,233“"“039"’_/3’2282 n3,0:<z.f(1+c0)) e=a=0;26=—p
+202600p + 2Bz; €006 + v, 1) = () 28=-p
nd2 = <Zkﬂ) 2a+pB)=—q
n33 = (7, 7kg) 2=-p;2a+p)=—q

The indicesj, k take valuesj =0, ..., p, k=0,..., q.

Table 6. Odd subspaces; for even QES Lie algebra% and s-modulesn.

Label s; n Rules

0 (O(@id: + @) 0O+ 51[n0]

Oe  (xid) n0€ 4 51[n0¢]

Oz (9 +€%0;80)  (f; +g0.8 + fi0) é=e=01¢€s)
(fj» £i9) é=1 1lesd.

The indices, j take values =1,..., m,j=1...,p.

The Lie algebraD?! naturally splits into the semidirect product of the subalgebras of
vector fieldsY and multiplication operatora:

D=V x M.

The classification up to a change of variable of the finite-dimensional subalgebtassof
due to Lie [10].

Lemma 2.1 Every non-zero finite-dimensional Lie algebra of vector fields on the line is
related by a local change of variable to one of the following Lie algebras:

bt = (3.) h? = (9,, z9;) h® = (d,, z9,, 223.).

Since the natural projection : D' — V mapping a differential operator (2.1) to its
vector field partf(z)d, defines a Lie algebra homomorphism, and gauge transformations
leave the vector field part unaffected, one may use Lie’s classification of vector fields to
derive the classification of all finite-dimensional subalgebra®b{11, 9].

Theorem 2.2Let g be a finite-dimensional subalgebra®t. Theng is equivalent to one
of the following Lie algebras:

(i) g° = (gi(2)|1 < i < m), where the functiong; are linearly independent.

(i) gt = (8,, 2|0 < i < my, p € M). HereM denotes a finite collection of complex
numbers.

(i) g2 = (3., 20,,2'10<i < m); §° = (d,, 0. + a), wherea € C.



6884 F Finkel et al

Table 7. Odd subspaces; for even QES Lie algebra% and s-modulesn.

Label s1 n Rules

1 m((09,,0), M)  n€ + s1[nte]

1o, (21 el dg) nb€ 4+ sq[nt€] 0<i<my pnweM

1y, (9 +é0:8%0)  nl€ lesgande=1=¢=0

p=qv; F=81

13 (08,80 +€0;0) (n11 &0t (1+20)) Hesi=lesianE =0
é=1=1leslankt =0
Pv=qv

1 (08, + 3p; 0) nt0 6 ¢ s1. If v#£0, we have:

M) pv=qv

. 3 .
(i) ¢ = Z;’:ﬁ))!!vz"a, with

q; fixed constants anfl=1, ..., ty

Po=4qo,qo+ 1 t0=0

11

n Oeshlesl; po=aq

The parametee = 0 in case 1.

(iv) g = (8., 20., %0, + 2z, 1), wherea € C; §° = (9., 29, + «, %9, + 2uz), where
o € C.

3. Lie superalgebras of differential operators

We now focus our attention on<2 matrix-valued Lie superalgebras of first-order differential
operators. Le® denote the associative algebra of alk 2 matrix differential operators on
a complex variable. We introduce &,-grading in® in the usual way: an operator

a b
r=( )
wherea, b, ¢, andd are scalar differential operators, is said todvenif b = ¢ = 0, and
odd if a =d = 0. This grading, combined with the generalized Lie product

[A, B]; = AB — (—1)deoAdegs g 4

endows® with a Lie superalgebra structure. We shall be interested in finite-dimensional
graded subalgebras lying in the graded subspate c D of first-order differential
operators. Two such graded subalgebgaand £ will be consideredequivalentif their
elementsT € £ andT < £ are related by dixed local change of variablé = ¢(z) and a
gauge transformation consistent with the grading:

T—T with 7(2) = U(2)T(2)U (z)~* (3.1)
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Table 8. Odd subspaces; for even QES Lie algebra% and s-modulesn.

Labels; n Rules

21 mo((99;,0)) n2€ + 51[n?€] rzlsm=n+l

200 (z'09) n2€ 4+ 51[n%€] 0<i<m

22 (Do +€0;€%0) n2€ lesd,andé=1=e=a=0
p=q;c=1

23 (00,09 +€60;0) (n?1;€2971(14 20)) 6 es1= 1lesiandE =0
é=1l=lesdank=a=0
r=9q

2 (0(z0; +0),00,, 09 +€*€0; 0) (n?1; 291+ e*é0))a=0p=g¢g
1¢s2=0¢s1,8=p,¢=0
E=1=0¢s1,6=—(q+1

25 {00, 4+ &*zdp, €2p, Bp) n21 p =q +1 and either:
(e=p=0a=1
(i)e=é=18=—y

2% (00,4 3p: 6) n?! esi=>lessandp =gq

0¢s1i=>p=q.q+1

27 (02, + 89 +80,00,;6) (n21; &zt e=a=0p=gq

+(6+q+1)26) 1¢si=0¢siands=p
fesy=>e=0

where the 2« 2 invertible complex matriXU (z) is either diagonal or antidiagonal. This is
a very natural notion of equivalence in the context of QES problems; inde&d,isf an
£-module of vector-valued functions atlis equivalent tof under the mapping (3.1), then
N = UN is an invariant module fo£. The first aim of this paper consists of classifying
under the above equivalence all finite-dimensional graded subalgebf@scoftained in
D,

We begin with the following elementary result, that we shall state without proof.

Lemma 3.1Let £ c D@ be a graded subalgebra ®, and letg, and £, denote its even

and odd subspaces, respectively. We then have:
(i) either all the elements of; are of the form

(0 ¢0.+ow
T, = (X 0 ) (3.2)
or all its elements are of the form
= 0 X
= <<1)8Z + o O) (33)

where¢, w, and x are analytic functions of.
(i) If £41 is non-zero, the elements @ are of the form:

[ fo+ Ny 0
To= < 0 fo.+ h2> (3.4)

where f, hq, andh, are analytic functions of.
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Table 9. Odd subspaces; for even QES Lie algebraég and s-modulesn.

Label s; n Rules
3 0z~ 1(z0, + 2Bi/m)) (146) e=p=0,m=2
(1) B=0
n32 m>21,26=m—q—2
n33 m=122=m—q—2=—p
3 (2'0; 02" (20, +2B),0273,) w32, n33 20=-m; j=0,..., m+1
2=m—-q=-p
33 (ziam n3‘1, n33 20 = m;, —28=p=m+gq
3u  (8:0,02771(z0, + jB)) n3! 0 ¢s1;28=—p
n33 28=-p=—q,andd € 51 = 1€ 53
3u (39 + 0; 0277120, + jB)) n30 c=1;28=—¢p
n®3 28=—p=—q
35 (029, + €*709 + 286, (1) 20=1,8=0
008, + €*dg, €205, €0p) n33 20=1-26=p=¢q+1
3 (09,27 8p) (1) a=1,8=0,=012
The indexi takes values =0, ..., m. Incase 3,a =1- 75 andB =0 if m = 0. In cases
3, =0andj =0,1,2. In case 3, we also have =0 and le 58. Incase 3, y = —28 if
e=1.

Let us denote byD?! (respectively®?) the graded subalgebra @ generated by all
differential operators of the fornip and 7; (respectivelyZp and 71) in (3.4) and (3.2)
(respectively (3.4) and (3.3)). The graded subalge®rhand®? are equivalent, since they
are related by a gauge transformation with constant matrix

0:(2 é)

Furthermore, the gauge transformations preser@ig(or 1) are generated by diagonal
matricesU(z) = diag, 8), wherea and g are non-vanishing analytic functions of
z. Therefore, without any loss of generality, we can limit ourselves to classifying
the finite-dimensional graded subalgebras@df under local diffeomorphisms and gauge
transformations by diagonal matrices.

There is an alternative formalism for describing Lie superalgebras of differential
operators which uses Grassmann variables. The matrix classification scheme described
above is completely equivalent to classifying all finite-dimensional subalgebdsthe
Lie superalgebra? of first-order differential operators in one ordinary variabland one
Grassmann variableé which take values in the one-generator Grassmann algehra he
even and odd subspacesfare generated by differential operators of the form

To= f(2)9, 4+ g(2)00¢ + h(z) (3.5)
and
T1 =0¢(2)0; + x(2)0s + @ (2)0 (3.6)

respectively, wheref, g, h, ¢, x, andw are analytic functions oft. The appropriate
equivalence transformations are in this case changes of the independent variables preserving
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the relation{d,, 6} = 1, namely

Z2=0(2) 6 =pB(2)0 (3.7)

and gauge transformations with a gauge factor of the form «(z), wherea and g are
non-vanishing analytic functions af The standard identifications

0ot g <> o0~ with o™ = (07) = (8 é)

lead directly to the equivalence of both formalisms. For the sake of simplicity, we shall
use the Grassmann variable notation in the following. Our first step will thus be to classify
all finite-dimensional Lie subalgebrdsof 0(1), the even subspace of. We will then
restrict ourselves to the subalgebrasc aé which admit a non-trivial finite-dimensional
odd subspace; satisfying the conditions

[s0, 51] C 51 {s1, 51} C so. (3.8)

We will determine all such odd subspaegsand then obtain the finite-dimensional modules
of functionsn C C®(AY) ~ C*(C)® (1, #) associated to each Lie superalgebea so@s:.
Note that theA-valued functionf (z) +g(z)@ is identified with the two-component function
(g(2), f(2))" in the matrix formalism.

4. Lie algebras of even differential operators
In this section we classify the finite-dimensional subalgebrafsthe even subspam% of
ol
The Lie algebrar} admits the following natural decomposition:
W=Vxa
wherea is the Abelian Lie algebra of all operators of the form
To = g(2)03 + h(z).

We first observe that the projection : Dé — V¥V mapping an even differential operator of
the form (3.5) tofd, € V is a homomorphism of Lie algebras. Moreover, botnd its
image under a change of the odd variable,

=z 6 = B(2)0 (4.1)

and/or a gauge transformation clearly have the same projection ifherefore,z (l) is
either zero or equivalent under a change of the even variable

Z2=0() 9=0

to one of the three Lie algebra$in lemma 2.1. The situation in this respect is completely
analogous to the one in the scalar case. Moreover, the Lie algedfrall vector fields of
the form

To = f(2)9. + g(2)00 (4.2)
is isomorphic toD?!, under the identification

Tor> f(2)d, + g(2).

Under this identification, a gauge transformatiorDihby a non-vanishing functionm = «(z)
becomes a change of the odd variableviof the form6 = 6/«. Thus, the classification
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of the finite-dimensional subalgebras Pf in theorem 2.2 and the classification of the
finite-dimensional subalgebras efunder changes of variables (3.7) are identical.

We need to introduce some additional notation at this stage.VLet (v1, v2) be an
abstract two-dimensional complex vector space. We defifletia@nslation bimoduleas a
finite-dimensionah!-invariant subspace 0¥1® V. The following result provides a detailed
description ofV-translation bimodules.

Proposition 4.1.The most generaV -translation bimodule is a direct sum
m(V, M) = @ mi, (V)&

neM
i=1,2,3

whereM is a finite collection of complex numbers, and

m, (V) = (Fvil0<k <my)  m2(V) = (¥ 020 <k <)
k 4 4.3
mi(V) = <Zm“+k vy + 7™ Zcf’kzjvﬂl <k < ’"u> “3)
j=1
with
Mk — (mu + k) (n, + 1)' cHk—i+1 (4.4)
/ e+ D'my +k — j+ D!
wherecl, ..., ¢ e C, andc*! # 0. By convention, the indices,,, n,, andr, take

the values-1, —1, and 0, respectively, when their corresponding modml‘g(s\/) are zero.

Remark. The notationmiL(V) is an abbreviated notation, since the latter sets actually
depend oru through the parameters,, n,, r, andc*’.

Proof. The only non-trivial point is the structure of the modunl%(V) of mixedvectors.
A mixed vectorg v1 + h v, may always be chosen to be proportional to

k i Uz
Zm”+ke’“v1+ E : C:}tjznﬁ—/e\kvz

veN
1<j<s
with k =1,...,r, and complex number&j’]’.‘. Acting with 9, on each of these vectors for
k=1,....r, we immediately obtain){ = §,, /", with ¢/* given by (4.4) forj < k
andc/"“ =0 for j > k. O

Hereafter, we shall use the following conventions. The highest valyeof an indexi
labelling a collection of operatorS = {T;|imin < i < imax Will be set toimin — 1 whenever
S = . The lettersa, 8, v, 8 will denote complex numbers, while the letterwill be
reserved for anon-zerocomplex number. We shall also define the sgtV) by

mo(V) = m(V, {0}) with %% = §4c.

Explicitly,
mo(V) = (z'v1, 2/v2, 2 (2" v1 + 2" v2)) (4.5)
witho<i<m,0<,j<n,1<k<r,and
(m+©)!(n+ 1!
T+ 0m+ D
Note thatc, = c if m = n.

Ck (4.6)



Quasi-exactly solvable Lie superalgebras of differential operators 6889

We are now ready to state the classification theorem for the finite-dimensional
subalgebras oﬁé. In what follows, a semicolon will be used to separate those generators
which characterize a given set from those which may or may not be present, and

ap = (g, 1).

Theorem 4.2Let [ be a finite-dimensional subalgebraw@f Then! is equivalent to one of
the following Lie algebras:

(i) 1°= (g;(2)09y + h;(z)|1 < i < m), where the operators are linearly independent.

(i) * = (3,; m(ag, M)), wherem(ag, M) is anag-translation bimodule.

(iii) 1?2 = (3., z0, + ahdy + B; mo(ap)), wheremp(ag) is given by (4.5). We also have
the constrainin = n if r > 0.

(iv) B = (9, 23, + @by + B, 220, + 202035 + 2Bz; 005 + y, 1).

Remark. Some of the generators may be simplified depending on the presence of the
optional generators. For instance, we may take g = 0 in [? if m,n > 0, or the second
generator of® may be taken asd. + 8 if 83, + y is present.

Proof. Case (i) is obvious. Let us start with In view of the isomorphisna ~ M ® ao,
we have:

= (3, 4 g0y + h, m(ag, M))

whereg and 2 may be eliminated by an appropriate change of the odd variable (4.1) and
a gauge transformation. Consider név Commutingzd, + ghd, + h with the elements

of m(ag, M) we conclude that¥ = {0}. If there are mixed operators present, that is,

if r =rp # 0in (4.3), thenm = n and ng),k = §jc. Furthermore, we may eliminate

g (respectivelyr) from zd, by a suitable change of the odd variable (respectively gauge
transformation) unless it is a constant. Finally, we may also have a gengtaterg6 dy +h.
Commuting it with the generators img(ag) we conclude that® N a is a subspace of
(095 + y, 1). Since

[0,, 220, + g0dg + h] = 220, + g'00s + I’
we conclude thag = 20z69y andh = 28z, for «, B € C. 0

5. The odd subspaces

We will next determine the possible finite-dimensional odd subspacésr each of the
families of even Lie algebrag of theorem 4.2. These odd subspaces must verify the
commutation relations (3.8). Let us remark that we are left with very few equivalence
transformations preserving the canonical forfnksted in theorem 4.2 to simplify the odd
subspaces. Despite this, we shall see that some of the Lie algebras of theorem 4.2 admit
only trivial finite-dimensional odd subspaces.

Lemma 5.1Let 5o be a subalgebra ob}, and assume tha¢; is a non-trivial finite-
dimensional odd subspace feg. If g(z)09s + h(z) belongs tosp, then g(z) must be a
constant.

We thus have the following.

Corollary 5.2. Let s be a finite-dimensional graded subalgebrabfvith a non-trivial odd
subspace;. The even subalgebra of s is then equivalent to one of the following Lie
algebras:

® 58 = (€00y+h1(2); hi(2)|2 < I < 5), where the functions; are linearly independent.
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(i) 5(1, = (,; €00y + az*, /&0 < I < 55,0 € T). Here X is a finite collection of
complex numberssg = —-1if0 ¢ ¥, anda =0 if e = 0.

(i) 3= (3,20, + B + B; €03y + ¥, 2 |0 <1 < s).

(V) s5 = (3,20, + afdp + B, 220, + 20203y + 2Bz; €03y + v, 1). The parametee
takes values QL.

In tables 1-4, we present the possible odd subspaces corresponding to each family of
Lie algebrassh in corollary 5.2. It is convenient at this stage to introduce the following
convention: the parametetsé andé will take the values 01, ande* = 1—¢, €* = 1—€.

As an illustration of how these tables were constructed, we shall examine the Lie
superalgebras of types &nd 1 in table 2. LetT; € s; be an operator of the form (3.6),
with ¢ # 0. If x = 0 for all such operators, then another operafor= 39, + @0,
with ¥ # 0, must be present in;. Let us assume that = « = 0 in s3, and x # O.
Anticommuting 7; with itself we conclude thatpy is a constant an@dy’ = 0. Thus
Ty = 60, + cdy + wb for some constant # 0. Since p., T1] = «'6, we conclude that
o' € (7?0 <i < my, u € M). Therefore,w = §z™+! for somes € C. Computing
[z'e”?, T1] we conclude thain, > s, for 0 # o € ¥ andmg > so — 1. Conversely, from
{T1, z'€**0} we deduce that, > m, for 0 # u € M andsg > mo+ 1 (Or so = mg if
8§ =0). In any case, we can gauge away the tégfe™! in 7y and rescal® so thatc = 1
without affectings}. We obtain the Lie superalgebra ih table 2. The choicg = 0 in T}
leads to the case;l

6. The QES Lie superalgebras

In this section we will determine which of the Lie superalgebsasbtained in section 5
(whose odd subspacg is non-zero) are QES, i.e. admit a non-trivial finite-dimensional
modulen c C®(A%), and will classify all such modules. We start with the following
elementary result.

Lemma 6.1Let s be a finite-dimensional graded subalgebrapbfwith a non-trivial odd
subspace;. Thens admits a non-zero finite-dimensional module of functians C*(A%)
if and only if s N a C ag.

We shall denote the most genetéal 6)-translation bimodule by
n(N) = @ nie”

veN
i=1,23

whereN is a finite collection of complex numbers, and

ny=(E0<k<p)  ni=(010<k<q)
k
) 6.1
nf = <z”"+k + 7% Zc;’kzjml <k < tv>. 6.1)
=
As in section 4,
Cy,k — (pv + k)I(CIV + 1)' Cu,k—_j+l
! (v + DMpy +k —j+ D!
wherec”!, ..., ¢"" e C, andc™! # 0. We shall also consider the set
no = n({0}) with %% = §4c.

In table 5, we present the list of the even QES subalgetjas corollary 5.2. The
calculations needed to complete table 5 present no difficulties. In tables 6-9, we present
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the possible odd subspacgscorresponding to the even QES subalgebras in table 5, along
with the invariant modules of functions fer= sy @ s1. The image of a module under
the action of the elements ef will be denoted bys;[n].

The case 4in table 7 perhaps deserves some special attention. According to table 5,
we haveX = ¢, {1}. It follows from table 2 that;, = (99, + d; 6), andf € s; = 1 € s7.
Assume first that ¢ s;. It is easy to see thap, = ¢, in equation (6.1) forv # 0.
Remarkably, forv # 0 the parameters”’, [ = 1, ..., t,, defining themixedfunctions in
n? are no longer arbitrary but of the form

vl _ (gv + D! l)g_[
(gv + D!

where gq; are fixed constants that can be determined recursively from the condition
(03, + 3)[n3] C n3/n2. The first 10 constants are
1 1 1 5 7 3x7 3x11 3x11x13 5x11x13
Wty A0 i s g
Finally, it is easy to see thagio = go, g0 + 1 andsg = 0. If 6 € sy, then 1€ s} and the
associated module is'!, with the constrainp, = ¢, for all v € N.

The parameterse and g appearing in the superalgebras of tyge are quantized.
This phenomenon, theguantization of the cohomologyas been noticed before in the
case of finite-dimensional QES Lie algebras and has received some study, [7,13]. The
parametere is quantized for all finite-dimensional Lie superalgebras of the tyfe
whereasg is only quantized in every case after imposing the QES condition. Finally,
it is also worth mentioning that the Lie superalgebsa(2, 2) ~ s((2|1), extensively used
in the construction of QES matrix Hamiltonians (see for instance [1,11,12], is the QES
superalgebras3in tables 4 and 9 witk = 1.
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